

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

SCHOOL OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF BIOLOGY, CHEMISTRY AND PHYSICS

QUALIFICATION: BACHELOR OF SCIENCE (MAJOR AND MINOR)		
QUALIFICATION CODE: 07BOSC	LEVEL: 6	
COURSE CODE: TPH601S	COURSE NAME: THERMAL PHYSICS	
SESSION: JULY 2023	PAPER: THEORY	
DURATION: 3 HOURS	MARKS: 100	

SECOND OPPORTUNITY/SUPPLEMENTARY EXAMINATION PAPER			
EXAMINER(S)	DR VAINO INDONGO		
MODERATOR:	PROF SYLVANUS ONJEFU		

INSTRUCTIONS				
1.	Write all your answers in the answer booklet provided.			
2.	Read the whole question before answering.			
3.	Begin each question on a new page.			
4.	A list of constants and useful formulae are shown on that las page of this paper.			

PERMISSIBLE MATERIALS

1. Non-Programmable Scientific Calculator

THIS PAPER CONSISTS OF 4 PAGES

(INCLUDING THIS FRONT PAGE)

QUESTION 1			(20)		
1.1 Briefly	, explain the following thermodynami	c terms:			
(i)	Internal energy	(2)			
(ii)	Boundary wall	(2)			
(iii)	Open system	(2)			
(iv)	v) Isochoric process				
(v)	The triple point of water		(2)		
1.2 Use th	e following information in the table b	elow to calculate the unknown t	emperature		
T (in K	elvin).		(4)		
	Temperature (°C)	Height of mercury (Hg)			
	100	8.1 cm			
	Т	6.5 cm			
	0	2.1 cm			
1.3 Suppo	se that the gas tank in your car is com	pletely filled when the tempera	ture is 7°C.		
How many gallons will spill out of the 150-gallon steel tank when the temperature rises					
to 35°C?					
011555101			(0=)		
QUESTION	12		(25)		
2.1 Draw a	and label correctly a P-V diagram of th	ree isotherms of temperatures	$T_1 = 200 \text{ K},$		
T_2 = 260 K and T_3 = 230 K. Illustrate an adiabatic curve on the same diagram, cutting through all isotherms.					
2.2 Conve	rt the following temperatures into Fah	nrenheit readings:			
2.2.1 26	3.15 K		(3)		
2.2.2 10	1°C		(2)		

- 2.4 The compression ratio of a petrol engine is 20.0 to 1; that is, air in a cylinder is compressed adiabatically to $\frac{1}{20.0}$ of its initial volume.
 - (a) If the initial pressure is $1.01 \times 10^5 Pa$ and the initial temperature is 20°C, find the final pressure and the temperature after adiabatic compression. (6)
 - (b) How much work does the gas do during the compression if the initial volume of the cylinder is $1.00 L = 1.00 \times 10^{-3} m^3$. Use the values $C_v = 20.8 J/mol. K$ and $\gamma = 1.400$ for air. (5)
 - (c) Hence, find the change in internal energy of the air. (4)

QUESTION 3 (30)

- 3.1 Calculate the entropy change of 150 moles of an ideal gas which undergoes a free expansion from V_1 to $8V_1$ under a constant temperature. R = 8.314 J/mol.K (6)
- 3.2 Suppose 0.400 mol of an ideal diatomic gas [γ = 1.400] undergoes a Carnot cycle between 227°C and 37°C, starting at $p_a = 25.0 \times 10^5 Pa$ at point A in the pV-diagram of Figure 1. The volume triples during the isothermal expansion step A-B.

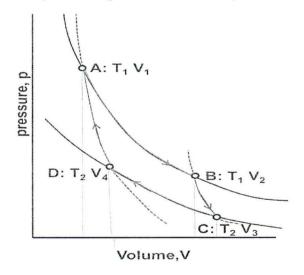


Fig. 1

- (a) Find the pressure and volume at points A, B, C, and D. (14)
- (b) Find Q, W, and U for each step and for the entire cycle. (8)
- (c) Find the efficiency directly from the results of part (b). (2)

QUESTION 4 (25)

4.1 A gasoline engine takes in $1.42 \times 10^4 \, \text{J}$ of heat and delivers 3300 J of work in every cycle. The heat was obtained by burning gasoline with heat combustion of $4.60 \times 10^4 \, \text{J/g}$.

- (i) What is the thermal efficiency of the gasoline engine? (3)
- (ii) How much heat is discarded to the environment in each cycle? (3)
- (iii) What mass of fuel is burned per cycle? (3)
- (iv) If the engine goes through 70.0 cycles per second, what is the power output of the engine in kW? (3)
- 4.2 Derive the Maxwell Relation from Helmholtz Free energy, F = U TS. (7)
- 4.3 The speeds of 9 molecules of a gas are 24*n*, 20*n*, 25*n*, 21*n*, 23*n*, 30*n*, 29*n*, 19*n* and 27*n* all in ms⁻¹, such that *n* is equal to the number of molecules. Evaluate the rms speed. (6)

END

Useful equations and constants:

$$<$$
 K. E. $> = \frac{1}{2} \text{mv}_{\text{rms}}^2 = \frac{1}{2} \text{m} \frac{3k_B T}{m} = \frac{3}{2} k_B T$

$$v_{\text{rms}} = \sqrt{\frac{3PV}{Nm}} = \sqrt{\frac{3Nk_B T}{Nm}} = \sqrt{\frac{3k_B T}{m}}$$

The ideal gas law PV = Nk_BT

Boltzman's constant: $k_B = 1.38 \times 10^{-23} \text{ JK}^{-1}$,

Avogadro's number: $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Mean free path:
$$\lambda = \frac{k_B T}{\sqrt{2} d^2 P}$$

$$1 \text{ atm} = 1.01 \times 10^5 \text{ Pa}$$

Maxwell-Boltzmann Distribution: $f(V)=4\pi\left[\frac{m}{2\pi k_BT}\right]^{\frac{3}{2}}v^2e^{-mv^2/_{2k_BT}}$